Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Document Type
Year range
1.
Problemy Osobo Opasnykh Infektsii ; - (3):164-169, 2022.
Article in Russian | Scopus | ID: covidwho-2281217

ABSTRACT

The aim of the work was to study the pathogenicity of newly emerging variants of SARS-CoV-2 on the model of the Syrian golden hamster. Materials and methods. We used the strains of SARS-CoV-2 virus related to the VOC circulating in the territory of the Russian Federation. The experiments were carried out on outbreed Syrian hamsters obtained from the nursery of the SSC VB "Vector”. The infectious titer of coronavirus in tissue samples collected from infected laboratory animals was determined on a Vero E6 cell culture. The Ct in RT-PCR was considered an additional parameter for monitoring the viral load in the samples. The severity of lung tissue damage in Syrian hamsters with COVID-19 was assessed by histological preparations. Results and discussion. 50 % infecting doses in case of the intranasal infection have been determined, histological analysis of lung tissues performed. The pathogenicity of various variants of the SARS-CoV-2 virus for the Syrian hamster has been evaluated, differences in infecting doses and pathological changes in the lungs have been revealed. SARS-CoV-2 viruses belonging to Beta genetic variant have the highest virulence, while Alpha variant has the lowest one when comparing the studied strains by the ID50 value. The Delta and Omicron variants have a matched ability to cause specific damage to the tissues of the respiratory tract, while being inferior only to the Beta variant. It has been demonstrated that Syrian hamsters are an adequate model for assessing the pathogenicity of the SARS-CoV-2 virus variants of concern. Variants of SARS-CoV-2 virus during intranasal infection has shown different degree of pathogenicity in the Syrian hamster model. © 2022 Russian Research Anti-Plague Institute. All rights reserved.

2.
Dis Model Mech ; 15(11)2022 11 01.
Article in English | MEDLINE | ID: covidwho-2264622

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, causes life-threatening disease. This novel coronavirus enters host cells via the respiratory tract, promoting the formation of severe pulmonary lesions and systemic disease. Few animal models can simulate the clinical signs and pathology of COVID-19 patients. Diverse preclinical studies using K18-hACE2 mice and Syrian golden hamsters, which are highly permissive to SARS-CoV-2 in the respiratory tract, are emerging; however, the systemic pathogenesis and cellular tropism of these models remain obscure. We intranasally infected K18-hACE2 mice and Syrian golden hamsters with SARS-CoV-2, and compared the clinical features, pathogenesis, cellular tropism and infiltrated immune-cell subsets. In K18-hACE2 mice, SARS-CoV-2 persistently replicated in alveolar cells and caused pulmonary and extrapulmonary disease, resulting in fatal outcomes. Conversely, in Syrian golden hamsters, transient SARS-CoV-2 infection in bronchial cells caused reversible pulmonary disease, without mortality. Our findings provide comprehensive insights into the pathogenic spectrum of COVID-19 using preclinical models.


Subject(s)
COVID-19 , Cricetinae , Mice , Animals , Mesocricetus , SARS-CoV-2 , Disease Models, Animal , Lung/pathology , Mice, Transgenic
3.
Vaccines (Basel) ; 10(12)2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2123909

ABSTRACT

The novel coronavirus (SARS-CoV-2) epidemic continues to be a global public crisis affecting human health. Many research groups are developing different types of vaccines to suppress the spread of SARS-CoV-2, and some vaccines have entered phase III clinical trials and have been rapidly implemented. Whether multiple antigen matches are necessary to induce a better immune response remains unclear. To address this question, this study tested the immunogenicity and protective effects of a SARS-CoV-2 recombinant S and N peptide vaccine in the Syrian golden hamster model. This experiment was based on two immunization methods: intradermal and intramuscular administration. Immunized hamsters were challenged with live SARS-CoV-2 14 days after booster immunization. Clinical symptoms were observed daily, and the antibody titer and viral load in each tissue were detected. The results showed that immunization of golden hamsters with the SARS-CoV-2 structural protein S alone or in combination with the N protein through different routes induced antibody responses, whereas immunization with the N protein alone did not. However, although the immunized hamsters exhibited partial alleviation of clinical symptoms when challenged with the virus, neither vaccine effectively inhibited the proliferation and replication of the challenging virus. In addition, the pathological damage in the immunized hamsters was similar to that in the control hamsters. Interestingly, the neutralizing antibody levels of all groups including immunized and nonimmunized animals increased significantly after viral challenge. In conclusion, the immune response induced by the experimental S and N polypeptide vaccines had no significant ability to prevent viral infection and pathogenicity in golden hamsters.

4.
Viruses ; 14(10)2022 09 26.
Article in English | MEDLINE | ID: covidwho-2043989

ABSTRACT

Background: Some viruses cause outbreaks, which require immediate attention. Neutralizing antibodies could be developed for viral outbreak management. However, the development of monoclonal antibodies is often long, laborious, and unprofitable. Here, we report the development of chicken polyclonal neutralizing antibodies against SARS-CoV-2 infection. Methods: Layers were immunized twice with 14-day intervals using the purified receptor-binding domain (RBD) of the S protein of SARS-CoV-2/Wuhan or SARS-CoV-2/Omicron. Eggs were harvested 14 days after the second immunization. Polyclonal IgY antibodies were extracted. Binding of anti-RBD IgYs was analyzed by immunoblot and indirect ELISA. Furthermore, the neutralization capacity of anti-RBD IgYs was measured in Vero-E6 cells infected with SARS-CoV-2-mCherry/Wuhan and SARS-CoV-2/Omicron using fluorescence and/or cell viability assays. In addition, the effect of IgYs on the expression of SARS-CoV-2 and host cytokine genes in the lungs of Syrian Golden hamsters was examined using qRT-PCR. Results: Anti-RBD IgYs efficiently bound viral RBDs in situ, neutralized the virus variants in vitro, and lowered viral RNA amplification, with minimal alteration of virus-mediated immune gene expression in vivo. Conclusions: Altogether, our results indicate that chicken polyclonal IgYs can be attractive targets for further pre-clinical and clinical development for the rapid management of outbreaks of emerging and re-emerging viruses.


Subject(s)
COVID-19 , Animals , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Chickens , SARS-CoV-2 , Egg Yolk , RNA, Viral , Antibodies, Viral , Antibodies, Neutralizing , Antibodies, Monoclonal , Antiviral Agents , Cytokines
5.
Emerg Microbes Infect ; 11(1): 1778-1786, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1915483

ABSTRACT

The Omicron BA.1 (B.1.1.529) SARS-CoV-2 variant is characterized by a high number of mutations in the viral genome, associated with immune escape and increased viral spread. It remains unclear whether milder COVID-19 disease progression observed after infection with Omicron BA.1 in humans is due to reduced pathogenicity of the virus or due to pre-existing immunity from vaccination or previous infection. Here, we inoculated hamsters with Omicron BA.1 to evaluate pathogenicity and kinetics of viral shedding, compared to Delta (B.1.617.2) and to animals re-challenged with Omicron BA.1 after previous SARS-CoV-2 614G infection. Omicron BA.1 infected animals showed reduced clinical signs, pathological changes, and viral shedding, compared to Delta-infected animals, but still showed gross- and histopathological evidence of pneumonia. Pre-existing immunity reduced viral shedding and protected against pneumonia. Our data indicate that the observed decrease of disease severity is in part due to intrinsic properties of the Omicron BA.1 variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Mesocricetus , SARS-CoV-2/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL